

Proportional relief valves type RZMO-AES

direct operated, without integral pressure transducer, ISO 4401 size 06

AES execution included in this table is available only for running supplies or spare parts For new applications it is suggested new AEB and AES executions, see table FS007

- AES - PS - 010 / 315 / *

Proportional pressure relief valve size 06

= without integral transducer

AE = as A plus integral electronics

AES = as A plus integral digital electronics

Communication interfaces (only for AES):

PS = Serial (1)

BC = CANopen

BP = PROFIBLIS DE

EH = EtherCAT

Configuration:

010 = regulation on port P, discharge in T

Pressure range

50 = 50 bar

100 = 100 har

210 = 210 bar

315 = 315 bar

350 = 350 bar

Seals material: omit for NBR (mineral oil & water glycol) PE = FPM

Coil voltage (only for -A execution)

= standard coil for 24Vpc Atos drivers

Series number

6 = optional coil for 12Vpc Atos drivers

18 = optional coil for low current drivers

Electronics options

for -AE execution, see section 9:

I = current reference input (4÷20 mA)

Q = enable signal

Electronics options

for -AES execution, see section 11:

Q = enable signal

Z = adds double power supply, enable and fault signals

(1) Serial communication interface always present, also for -BC, -BP and -EH options

RZMO are poppet type proportional pressure relief valves, direct operated without integral pressure transducer, which provide pressure regulation proportional to electronic reference signals.

They operate in association with electronic drivers, see section 2, which supply the proportional valve with proper current to align valve regulation to the reference signal supplied to the electronic driver.

They are available in different executions:

- · -A, without integral pressure transducer.
- -AE, -AES, as -A plus analogue (AE) or digital (AES) integral electronics (5)

The system pressure is controlled by the poppet 4, directly operated by the proportional solenoid 2 and the spring 3.

The integral electronics (5) ensures factory presetting, fine functionality plus valve-tovalve interchangeability and simplified wiring and installation.

The electronic main connector (6) is fully interchangeable for -AE and -AES executions. Standard 7 pin connector is used for power supply, analog input reference and monitor signals.

12 pin connector is used for option /Z (AES).

Following communication interfaces 7, (8), (9), (n) are available for the -AES execution:

- -PS, Serial communication interface for configuration, monitoring and firmware updating through Atos PC software present also for -BC, always -BP and -EH options
- -BC, CANopen interface-BP, PROFIBUS-DP interface
- -EH. EtherCAT interface

The valves with -BC and -BP interfaces can be integrated into a fieldbus communication network and thus digitally operated by the machine control unit.

The coils are fully plastic encapsulated with insulation class H

Mounting surface: ISO 4401, size 06 Max flow: 4 l/min

Max pressure: 350 bar.

2 ELECTRONIC DRIVERS FOR RZMO

Valve model		-A							
Drivers model	E-MI-AC-01F	E-MI-AS-IR	E-BM-AC-01F	E-BM-AS-PS	E-ME-AC-01F	E-RP-AC-01F	E-RI-AE	E-RI-AES	
Data sheet	G010	G020	G025	G030	G035	G100	G110	G115	

Note: for power supply and communication connector see section [14]

3 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C)

Hydraulic symbols			P	rif.		
Valve model			RZMO-A	F	RZMO-AE RZMO-A	ES
Max regulated pressure (Q =	= 1 l/min) [ba	ar] 50	100	210	315	350
Min. regulated pressure (Q =	= 1 l/min) [ba	ar] 1	1,8	2,5	3,5	3
Max. pressure at port P	[ba	ar]		350	,	,
Max. pressure at port T	[ba	ar]		210		
Max. flow	[l/mi	n]		4		
Response time 0-100% step (depending on installation)	signal [m	is]		≤70		
Hysteresis	[% of the max pressur	e]		≤1,5		
Linearity	[% of the max pressur	re]		≤3		
Repeatability	[% of the max pressur	e]		≤2		

Above performance data refer to valves coupled with Atos electronic drivers, see section 2.

4 MAIN CHARACTERISTICS

Assembly position	Any position
Subplate surface finishing	Roughness index Ra 0,4 - flatness ratio 0,01/100 (ISO 1101)
Ambient temperature	-20°C ÷ +70°C for -A execution; -20°C ÷ +60°C for -AE and -AES executions
Fluid	Hydraulic oil as per DIN 51524 535 for other fluids see section 1
Recommended viscosity	15 ÷100 mm²/s at 40°C (ISO VG 15÷100)
Fluid contamination class	ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10 ≥75 recommended)
Fluid temperature	-20°C +60°C (standard seals) -20°C +80°C (/PE seals)
Coil resistance R at 20°C	$3 \div 3.3 \Omega$ for standard; $2 \div 2.2 \Omega$ for option /6; $13 \div 13.4 \Omega$ for option /18
Max solenoid current	2,6 A for standard 12 V∞ coil; 3,25 A for 6 V∞ coil; 1,5 A for 18 V∞ coil
Max power	30 Watt for -A execution; 50 Watt for -AE and AES executions
Protection degree (CEI EN-60529)	IP65 for -A execution; IP67 for -AE and AES executions
Duty factor	Continuous rating (ED=100%)

5 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

Regulation diagrams with flow rate Q = 1 l/min

1 = RZMO-A, RZMO-AE, RZMO-AES

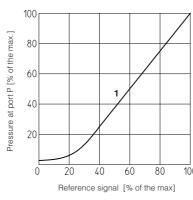
Note:

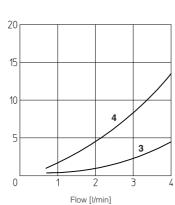
The presence of counter pressure at port T can affect the effective pressure regulation.

5.2 Pressure/flow diagrams

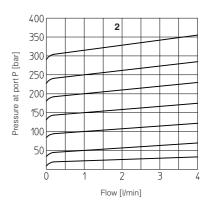
with reference signal set at Q = 1 I/min

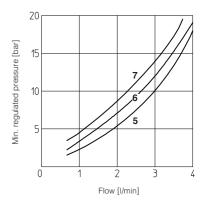
2 = RZMO-A, RZMO-AE, RZMO-AES


with zero reference signal


3 = RZMO-*-010/50

4 = RZMO-*-010/100


5 = RZMO-*-010/210 **6** = RZMO-*-010/315


7 = RZMO-*-010/350

Min. regulated pressure [bar]

5.4 Dynamic response

The response times in section 3 have to be considered as average values. The pressure variation in consequence of a modification of the reference input signal to the valve is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response.

6 GENERAL NOTES

RZMO proportional valves are CE marked according to the applicable Directives (e.g. Immunity/Emission EMC Directive and Low Voltage Directive).

Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in table F003 and in the installation notes supplied with relevant components.

The electrical signals of the valve (e.g. monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

7 OPTIONS FOR -A EXECUTION

7.1 Option /6 optional coil to be used with Atos drivers with power supply 12 \mbox{Vdc}

7.2 Option /18 optional coil to be used with electronic drivers not supplied by Atos

8 CONNECTIONS FOR -A EXECUTION

SOLENOID POWER SUPPLY CONNECTOR									
PIN	Signal description								
1	SUPPLY	25 3							
2	SUPPLY								
3	GND								

9 ANALOG INTEGRAL DRIVERS -AE - OPTIONS

Standard driver execution provides on the 7 pin main connector:

Power supply - 24Vpc must be appropriately stabilized or rectified and filtered; a 2,5 A safety fuse is required in series to the driver power supply.

Apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers

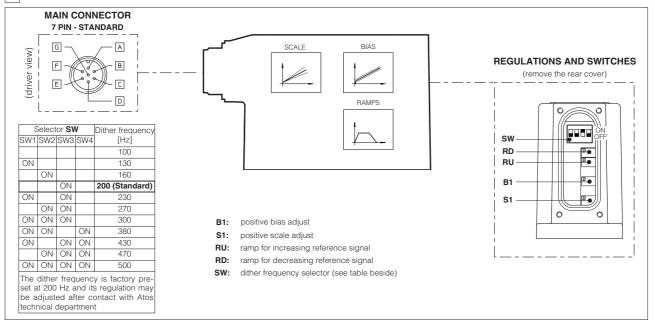
Reference input signal - analog differential input with 0÷+10Vpc nominal range (pin D, E), proportional to desired coil current

Monitor output signal - analog output signal proportional to the actual valve's coil current (1V monitor = 1A coil current)

Following options are available to adapt standard execution to special application requirements:

9.1 Option /I

It provides the 4÷20 mA current reference signal instead of the standard 0÷+10 Vpc. Monitor output signal is still the standard 0÷+10Vpc.


It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

9.2 Option /Q

It provides the possibility to enable or disable the valve functioning without cutting the power supply (the valve functioning is disabled but the driver current output stage is still active). To enable the driver supply a 24Vpc on the enable input signal.

9.3 Possible combined option: /IQ

10 ANALOG INTEGRAL DRIVERS -AE - MAIN FUNCTIONS AND ELECTRONIC CONNECTIONS

10.1 7 PIN MAIN CONNECTOR

PIN	SIGNAL	TECHNICAL SPECIFICATION	NOTES		
А	V+	Power supply 24 Vpc for solenoid power stage and driver	logic	Input - power supply	
В	VO	Power supply 0 Vpc for solenoid power stage and driver lo	Gnd - power supply		
C (1)	AGND	Ground - signal zero for MONITOR signal	zero for MONITOR signal		
U . /	ENABLE	Enable (24 VDC) or disable (0 VDC) the driver	(for /Q option)	Input - on/off signal	
D	INPUT+	Reference analog input: 0÷+10 Vpc maximum range	Input analog signal		
E	INPUT -	Normal working range 0÷+10 VDC	Input - analog signal		
F	MONITOR	Monitor analog output: 0÷+5 VDC maximum range; 1 V =	Output - analog signal		
G	EARTH	Internally connected to the driver housing			

Note: (1) with /Q option ENABLE signal replaces AGND on pin C; MONITOR signal is reffered to pin B.

A minimum time of 60ms to 160ms have be considered between the driver energizing with the 24 Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

11 DIGITAL INTEGRAL DRIVERS -AES - OPTIONS

Standard driver execution provides on the 7 pin main connector:

Power supply
 24Vpc must be appropriately stabilized or rectified and filtered; a 2,5 A safety fuse is required in series to each driver power supply
 Apply at least a 10000 μF/40 V capacitance to single phase rectifiers or a 4700 μF/40 V capacitance to three phase rectifiers.

Apply at least a 10000 μr/40 v capacitance to single phase rectiliers of a 4700 μr/40 v capacitance to three phase rectiliers.

Reference input signal - analog differential input with 0÷+10 Vpc nominal range (pin D, E), proportional to desired coil current (4÷20 mA with

cable break detection, ± 10 mA, ± 20 mA or 0÷20 mA software selectable)

Monitor output signal - analog output signal proportional to the actual valve's coil current (1V monitor = 1A coil current)

Following options are available to adapt standard execution to special application requirements:

11.1 Option /Q

To enable the driver, supply 24Vdc on pin C referred to pin B: when the enable signal is set to zero the valve status is software selectable, by factory default the valve functioning is disabled (zero current to the solenoid) but the driver current output stage is still active. For the complete list of selectable status, see tab. G115.

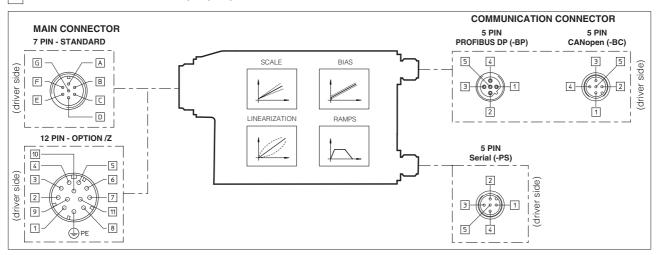
11.2 Option /Z

It provides, on the 12 pin main connector, the following additional features:

Logic power supply

Separated power supply for the solenoid (pin 1, 2) and for the digital electronic circuits (pin 9, 10).

Cutting solenoid power supply allows to interrupt the valve functioning but keeping energized the digital electronics thus avoiding fault conditions of the machine fieldbus controller. This condition allows to realize safety systems in compliance with European Norms EN13849-1 (ex EN954-1).


Enable Input Signal

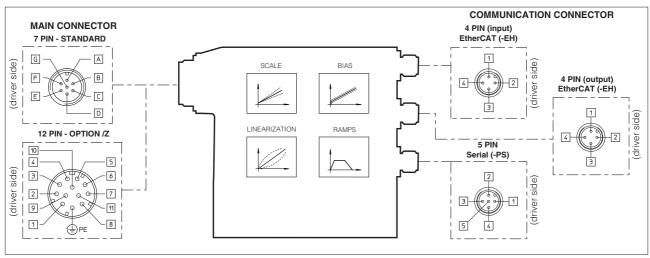
To enable the driver, supply 24Vdc on pin 3 referred to pin 2: when the enable signal is set to zero the valve status is software selectable, by factory default the valve functioning is disabled (zero current to the solenoid) but the driver current output stage is still active. For the complete list of selectable status, see tab. G115.

Fault Output Signal

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4÷20mA input, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24Vpc (pin 11 referred to pin 2): Fault status is not affected by the Enable input signal.

12 DIGITAL INTEGRAL DRIVERS -AES, -PS, -BC, -BP - MAIN FUNCTIONS AND ELECTRONIC CONNECTIONS

12.1 7 OR 12 PIN MAIN CONNECTOR


Standard 7pin	/Z option 12pin	SIGNAL	TECHNICAL SPECIFICATIONS	NOTES
А	1	V+	Power supply 24 Vpc for solenoid power stage (and for driver logic on 7 pin connection)	Input - power supply
В	2	V0	Power supply 0 Vpc for solenoid power stage (and for driver logic on 7 pin connection)	Gnd - power supply
D	4	INPUT+	Reference analog input: ±10 Vpc / ±20 mA maximum range software selectable, see 9	Input analog signal
Е	E - INPUT -		Default setting 0÷+10 Vpc differential input /Z option: common mode INPUT+ referred to AGND	Input - analog signal
	3	ENABLE	Enable (24 VDC) or disable (0 VDC) the driver	Input - on/off signal
С	C 5 AGND		Ground - signal zero for MONITOR signal signal zero for INPUT+ signal (only for /Z option)	Gnd - analog signal
F	6	MONITOR	Monitor analog output: 0÷+5 Vpc maximum range; 1 V = 1 A	Output - analog signal
-	7	NC	do not connect	
-	8	NC	do not connect	
-	9	VL+	Power supply 24 VDc for driver logic	Input - power supply
-	10	VL0	Power supply 0 Vpc for driver logic	Gnd - power supply
-	11	FAULT	Fault (0 Vpc) or normal working (24 Vpc)	Output - on/off signal
G	PE	EARTH	Internally connected to the driver housing	

Note: A minimum time of 270 to 340 ms have be considered between the driver energizing with the 24Vpc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero.

12.2 5 PIN M12 COMMUNICATION CONNECTORS

	Serial (-PS)		CANopen (-BC)			PROFIBUS DP (-BP)		
PIN	SIGNAL	TECHNICAL SPECIFICATION	SIGNAL	TECHNICAL SPECIFICATION	SIGNAL	TECHNICAL SPECIFICATION		
1	NC	do not connect	CAN_SHLD	Shield	+5V	for termination		
2	NC	do not connect	NC	do not connect	LINE-A	Bus line (high)		
3	RS_GND	Signal zero data line	CAN_GND	Signal zero data line	DGND	data line and termination Signal zero		
4	RS_RX	Valves receiving data line	CAN_H	Bus line (high)	LINE-B	Bus line (low)		
5	RS_TX	Valves transmitting data line	CAN_L	Bus line (low)	SHIELD	do not connect		

13 DIGITAL INTEGRAL DRIVER -AES-EH - MAIN FUNCTIONS AND ELECTRONIC CONNECTIONS

Note: for the electronic connections of 7 or 12 pin main connector, see section 12.1

13.1 4 & 5 PIN M12 COMMUNICATION CONNECTORS

Serial (-PS)						
PIN	SIGNAL	TECHNICAL SPECIFICATION				
1	NC	do not connect				
2	NC	do not connect				
3	RS_GND	Signal zero data line				
4	RS_RX	Valves receiving data line				
5	RS_TX	Valves transmitting data line				

EtherCAT (-EH)					
PIN	SIGNAL	TECHNICAL SPECIFICATION			
1	TX+	Transmitter			
2	RX+	Receiver			
3	TX-	Transmitter			
4	RX-	Receiver			
Housing	Shield	Positioned on control cabinet side			

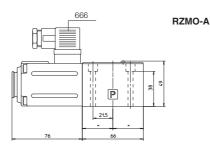
14 MODEL CODES OF POWER SUPPLY AND COMMUNICATION CONNECTORS (to be ordered separately)

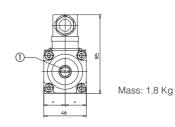
VALVE VERSION	-A	-AE, -AES		-AES/Z	-Serial (-PS) or CANopen (-BC)	PROFIBUS DP (-BP)	EtherCAT (-EH)
CONNECTOR CODE	666	ZH-7P	ZM-7P	ZH-12P	ZH-5P	ZH-5P/BP	ZM-4PM/EH
PROTECTION DEGREE	IP65	IP67	IP67	IP67	IP67	IP67	IP67
DATA SHEET	K500		G110, G115, K500			G115, K500	

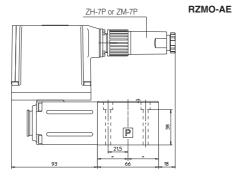
connectors supplyed with the valve

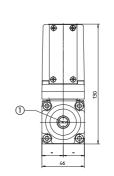
15 PROGRAMMING TOOLS - see tech table **GS500**

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected to the digital driver. E-SW software is available in different versions according to the driver's communication interface: PS (Serial) E-SW-PS, BC (CANopen) E-SW-BC and BP (PROFIBUS DP). Proportional valves with fieldbus communication interface can be directly managed by the machine control unit; it is required to implement in the machine control the standard communication as described in the user manuals supplied with the relevant programming software.

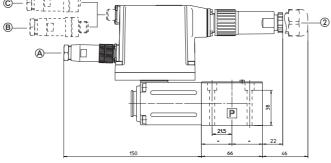

16 INSTALLATION DIMENSIONS [mm]

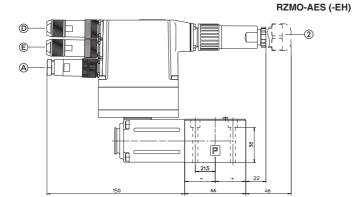

ISO 4401: 2005

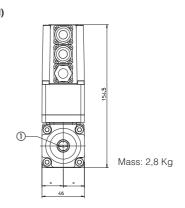

Mounting surface: 4401-03-02-0-05 (see table P005) (without ports A and B)
Fastening bolts:


4 socket head screws M5X50 class 12.9

Tightening torque = 8 Nm Seals: 2 OR 108 Ports P, T: Ø = 5 mm






Mass: 2,5 Kg

- A -PS communication interface, ZH-5P connector
- (B) -BP communication interface, ZH-5P/BP connector
- © -BC communication interface, ZH-5P connector
- $\ensuremath{\text{\textcircled{D}}}$ -EH communication interface (input), ZM-4PM/EH connector
- ⊕ -EH communication interface (output), ZM-4PM/EH connector
- 1 = screw for air bleeding
- ② dotted line = 12 pin connector ZH-12P for option /Z