

Proportional pressure control cartridges type LI*ZO-TERS, AERS

compensator, relief, reducing, with integral or remote pressure transducer, ISO 7368 sizes from 16 to 80 TERS and AERS execution included in this table is available only for running supplies or spare parts For new applications it is suggested new REB and RES executions, see table FS305

LICZO, LIMZO and LIRZO are 2-way proportional cartridges with integral or remote pressure transducer which respectively provide pressure compensation, relief and reducing controls

> They operate in association with electronic drivers, see section 4, which supply the proportional valve with proper current to align valve regulation to the reference signal supplied to the electronic driver.

according to the electronic reference signals.

These valves are composed by a 2-way cartridge ① and by a closing cover ② with a pilot proportional pressure relief valve 3 type RZMO, see tab. F010.

They are available in different executions:

- -TERS with integral pressure transducer ④ plus digital electronics (5) preset in closed loop, featuring improved static and dynamic performances.
- · -AERS as -TERS but without integral pressure transducer (predisposed for connection of remote pressure transducer).

The integral electronics ensures factory presetting, fine functionality plus valve-tovalve interchangeability and simplified wiring and installation.

The electronic main connector ⑦ is fully interchangeable for -TERS and -AERS executions. Standard 7 pin connector is used for power supply, analog input reference and monitor signals.

12 pin connector is used for option /Z

Following communication interfaces (6) are available

• -PS, Serial communication interface for configuration, monitoring and firmware updating trough Atos PL software
-BC, CANopen interface
-BP, PROFIBUS DP interface

The valves with -BC and -BP interfaces can be integrated into a fieldbus communication network and thus digitally operated by the machine control unit.

Size: 16, 25, 32, 40, 50, 63, 80 Max flow: up to 3000 l/min. Max pressure: 350 bar.

3 TYPICAL FUNCTIONS OF CARTRIDGES

Туре	Functional sketch (hydraulic symbol)	Typical section	Area ratio (1)
31	A B		1:1
36	B A		1:1
37			1:1

(1) It is the ratio of the area A to the area on which the pilot pressure is applied

ELECTRONIC DRIVERS FOR LICZO, LIMZO, LIRZO

36 = for LICZO

37 = for LIRZO

Type of cartridge, see section 3 for functions

31 = for LIMZO and LICZO

Valve model	-TERS	-AERS				
Drivers model	E-RI-TERS	E-RI-AERS				
Data sheet	G2	205				

4 = 4 bar: 7 = 7 bar for poppet 37

Note: for power supply and communication connector see section 15

5 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C)

Hydraulic symbols		Pp) C			TERS													
Valve model		LICZ	O-TERS	, -AERS	;			LI	MZO-TE	RS, -AE	RS		LIRZO-TERS, -AERS					
Valve size	16	25	32	40	50	16	25	32	40	50	63	80	16	25	32	40		
Max flow [l/m	n] 200	400	750	1000	2000	200	400	750	1000	2000	3000	4500	160	300	550	800		
Min regulated pres. at port A [b	ar] 9	9 8,5 8 13 15 7 7 7 10,5 12 12 (1) 7																
Min regulated pres. at port A for /350 [b	ar] 11	11 10 10 13 16 10 10 9 12 13 13 16						12										
Max regulated pres. at port A [b	ar]	100;	210; 31	5; 350			100; 210; 315; 350								100; 210; 315; 350			
Response time 0-100% step signal (depending on installation) -see section 12.4 ^{[r}	is]		80-300			80-350								80-200				
Hysteresis [% of regulated max pre	s.]							≤	D,5									
Linearity [% of regulated max pre	s.]	≤ 1																
Repeatibility [% of regulated max pre	s.]	≤ 0,2																
Thermal drift						zero p	oint dis	placeme	ent < 1%	at ΔT =	40°C							

(1) consult our technical office

6 MAIN CHARACTERISTICS OF PROPORTIONAL PRESSURE CARTRIDGES TYPE LI*ZO

Assembly position	Any position
Subplate surface finishing	Roughness index Ra 0,4 - flatness ratio 0,01/100 (ISO 1101)
Ambient temperature	-20°C ÷ +50°C for -TERS and -AERS
Fluid	Hydraulic oil as per DIN 51524 535 for other fluids see section 1
Recommended viscosity	15 ÷100 mm²/s at 40°C (ISO VG 15÷100)
Fluid contamination class	ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10≥75 recommended)
Fluid temperature	-20°C +60°C (standard seals and water glycol) -20°C +80°C (/PE seals)
Coil resistance R at 20°C	$3 \div 3.3 \Omega$
Max solenoid current	2,6 A
Max power	40 Watt
Protection degree (CEI EN-60529)	IP67
Relative duty factor	Continuous rating (ED=100%)

7 GENERAL NOTES

LI*ZO proportional valves are CE marked according to the applicable Directives (e.g. Immunity/Emission EMC Directive and Low Voltage Directive).

Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in table F003 and in the installation notes supplied with relevant components.

The electrical signals of the valve (e.g. monitor signals) must not be directly used to activate safety functions, like to switch-ON/OFF the machine's safety components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

8 DIGITAL INTEGRAL DRIVERS -AERS and -TERS -OPTIONS

Standard driver execution provides on the 7 pin main connector:

Power supply		24Vpc must be appropriately stabilized or rectified and filtered; a 2,5 A safety fuse is required in series to each driver power supply Apply at least a 10000 μ F/40 V capacitance to single phase rectifiers or a 4700 μ F/40 V capacitance to three phase rectifiers
Reference input signal	-	analog differential input with 0÷+10 Vpc nominal range (pin D,E), proportional to desired valve pressure regulation

Monitor output signal - analog output signal proportional to the actual valve pressure regulation = 0++10 VDc nominal range

Following options are available to adapt standard execution to special application requirements:

8.1 Option /I

It provides 4÷20 mA current reference and monitor signals instead of the standard 0÷+10 Vpc.

It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

8.2 Option /Z

It provides on 12 pin main connector the following additional features

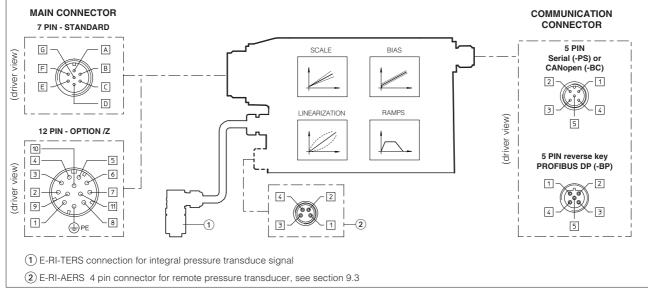
Logic power supply

Separated power supply for the solenoid (pin 1, 2) and for the digital electronic circuits (pin 9, 10).

Cutting solenoid power supply allows to interrupt the valve functioning but keeping energized the digital electronics thus avoiding fault conditions of the machine fieldbus controller. This condition allows to realize safety systems in compliance with European Norms EN13849-1 (ex EN954-1).

Enable Input Signal

To enable the driver, supply 24Vbc on pin 3 referred to pin 2: when the Enable signal is set to zero the valve functioning is disabled (zero current to the solenoid) but the driver current output stage is still active.


Fault Output Signal

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4÷20mA input, etc.). Fault presence corresponds to 0 Vpc, normal working corresponds to 24Vpc (pin 11 referred to pin 2): Fault status is not affected by the Enable input signal

8.3 Option /C (only for -AERS version)

The valve electronics is set to receive the 4÷20 mA feedback signal from the remote pressure transducer, instead of the standard 0÷10 V.

8.4 Possible combined options: /CI, /CIZ, /CZ (only for -AERS) and /IZ.

9.1 ELECTRONIC CONNECTIONS - 7 & 12 PIN MAIN CONNECTOR

Standard 7pin	/Z option 12pin	SIGNAL	TECHNICAL SPECIFICATIONS	NOTES
A	1	V+	Power supply 24 Vbc for solenoid power stage (and for driver logic on 7 pin connection)	Input - power supply
В	2	VO	Power supply 0 Vbc for solenoid power stage (and for driver logic on 7 pin connection)	Gnd - power supply
-	3	ENABLE	Enable (24 Vbc) or disable (0 Vbc) the driver	Input - on/off signal
D	4	INPUT+	Reference analog input: ±10 Vbc maximum range (4 ÷ 20 mA for /l option) Normal working range 0÷+10 Vbc (4 ÷ 20 mA for /l option)	Input - analog signal
E	-	INPUT -	differential INPUT+ and INPUT- (for 7 pin standard execution) common mode INPUT+ referred to AGND (only for /Z option)	input analog signal
С	5	AGND	Ground : signal zero for MONITOR signal (pin F of 7 pin standard or pin 6 of /Z option) signal zero for INPUT+ signal (only for /Z option)	Gnd - analog signal
F	6	MONITOR	Monitor analog output: ±10 Vpc maximum range (4 ÷ 20 mA for /l option)	Output - analog signal
-	7	NC	do not connect	
-	8	NC	do not connect	
-	9	VL+	Power supply 24 Vbc for driver's logic	Input - power supply
-	10	VL0	Power supply 0 Vbc for driver's logic	Gnd - power supply
-	11	FAULT	Driver status: Fault (0Vbc) or normal working (24 Vbc)	Output - on/off signal
G	PE	EARTH	Internally connected to driver housing	

Note: A minimum time of 270 to 590 ms have be considered between the driver energizing with the 24 Vbc power supply and when the valve is ready to operate. During this time the current to the valve coils is switched to zero

9.2 ELECTRONIC CONNECTIONS - 5 PIN COMMUNICATION CONNECTORS

		-PS Serial		-BC CANopen	-BP PROFIBUS DP						
PIN	SIGNAL	TECHNICAL SPECIFICATION	SIGNAL	TECHNICAL SPECIFICATION	SIGNAL	TECHNICAL SPECIFICATION					
1	NC	do not connect	CAN_SHLD	Shield	+5V	for termination					
2	NC	do not connect	NC	do not connect	LINE-A	Bus line (high)					
3	RS_GND	Signal zero data line	CAN_GND	Signal zero data line	DGND	data line and termination Signal zero					
4	RS_RX	Valves receiving data line	CAN_H	Bus line (high)	LINE-B	Bus line (low)					
5	RS_TX	Valves transmitting data line	CAN_L	Bus line (low)	SHIELD						

9.3 ELECTRONIC CONNECTIONS - 4 PIN REMOTE PRESSURE TRANSDUCER M8 CONNECTOR (only for AERS)

PIN	standard version		/C option (Ri = 316 Ω)						
1	TR remote trasducer press	ure signal (0÷+10 VDC)	TR	remote trasducer pressure signal (4÷20 mA)					
2	NC reserved (do not conne	ct)	NC	reserved (do not connect)					
3	VT remote transducer pow	er supply +24 VDC	VT	remote transducer power supply +24 VDC					
4	AGND signal zero for power si	pply and signal	NC	reserved (do not connect)					

See tab. G465 for the pressure transducer characteristics and connections.

10 PROGRAMMING TOOLS - see tech table GS500

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected to the digital driver. E-SW software is available in different versions according to the driver's communication interface: PS (Serial) E-SW-PS, BC (CANopen) E-SW-BC and BP (PROFIBUS DP). Proportional valves with fieldbus communication interface can be directly managed by the machine control unit; it is required to implement in the machine control the standard communication as described in the user manuals supplied with the relevant programming software.

11 DIAGRAMS OF LICZO/LIMZO (based on mineral oil ISO VG 46 at 50 °C)

100

80

60

40

20

0

16

12

8

0

200

regulated pressure [bar]

Min.

20

1

40

60

Reference signal [% of max.]

2

400

Flow [l/min]

600

800

80

100

Pressure at port A [% of the max]

11.1 Regulation diagrams

1 = LICZO-TERS, LICZO-AERS, LIMZO-TERS, LIMZO-AERS

Note:

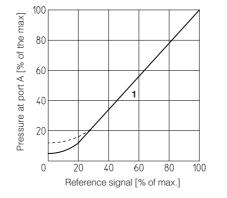
The presence of counter pressure at port T can affect the effective pressure regulation.

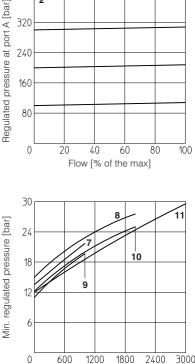
11.2 Pressure/flow diagrams

2 = LICZO-AERS, LICZO-TERS LIMZO-AERS, LIMZO-TERS

11.3 Min. pressure/flow diagrams with zero reference signal

- **1** = LIMZO-*-1
- **2** = LIMZO-*-2
- **3** = LIMZO-*-3 **4** = LICZO-*-1
- 5 = LICZO-*-2
- 6 = LICZO-*-3
- **7** = LICZO-*-4
- 8 = LICZO-*-5
- **9** = LIMZO-*-4
- 10 = LIMZO-*-5 11 = LIMZO-*-6

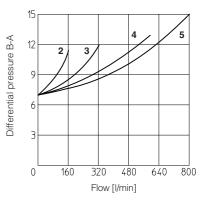

12 DIAGRAMS OF LIRZO (based on mineral oil ISO VG 46 at 50 °C)

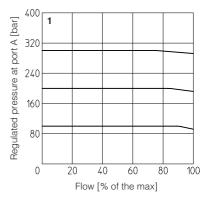

12.1 Regulation diagrams

1 = LIRZO-TERS, LIRZO-AERS

12.2 Min. pressure/flow diagrams with zero reference signal

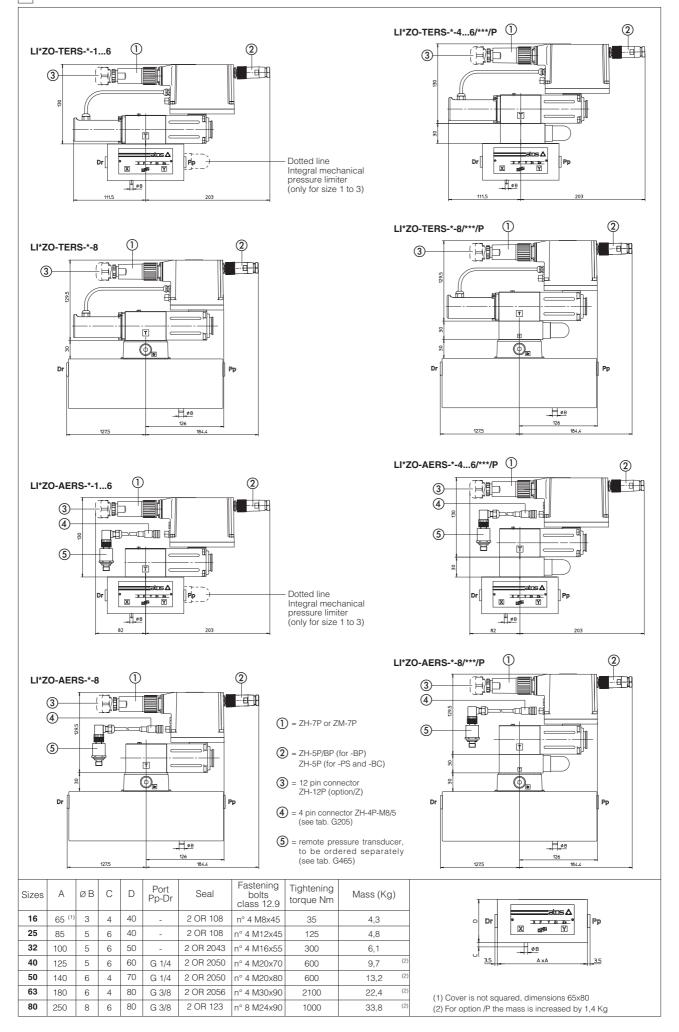
- **2** = LIRZO-*-1 **3** = LIRZO-*-2
- 4 = LIRZO-*-3
- **5** = LIRZO-*-4
- ---- dotted line = /350



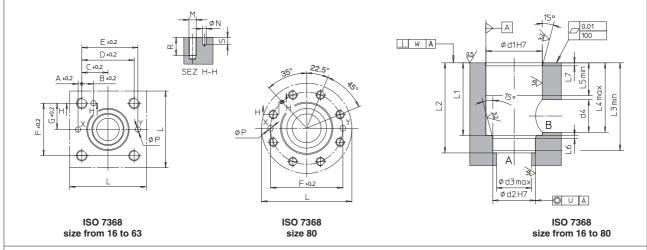


400

2


12.3 Pressure/flow diagrams

1 = LIRZO-AERS, LIRZO-TERS


12.4 Dynamic response

The response times in section 5 have to be considered as average values.

The integral closed loop control of -TERS and -AERS valves is affected by the stiffness of the hydraulic circuit: greater is the stiffness of the circuit, faster is the dynamic response. The valves dynamic performances can be optimized depending on the stiffness characteristics of the hydraulic circuit, by setting the internal software parameters. This regulation is particularly helpful in case of circuits with accumulators and/or with great fluid volumes and/or with long hoses.

14 COVER INTERFACE AND RECESS DIMENSIONS [mm]

16 2 125 23 46 48 46 23 66 M8 4 4 20 6 32 25 16 16 43 61 70 55 40 40 85 71 70 55 40 40 85 71 76 70																											
Sizes A B C D E F G L M D/N Fm min ndi ndi <th< th=""><th></th><th colspan="13">COVER INTERFACE</th><th colspan="10">RECESS</th></th<>		COVER INTERFACE													RECESS												
25 4 13 29 58 62 58 29 85 M12 6 6 30 8 45 34 25 25 58 17 70 57 30 25 25 63 172 61 30 88 45 34 25 25 58 61 72 61 70 57 30 25 25 63 172 61 10 30 88 46 34 25 25 58 61 72 61 80 25 25 86 172 61 80 <th< th=""><th colspan="14">I SIZES I A I B I C I D I F I F I G I I I M I ØN I Prov I B I I I ødd I ød2 I ødd I 01 I 1 2 I 13 I 14 I 15 I 16 I / I U I</th><th>W</th></th<>	I SIZES I A I B I C I D I F I F I G I I I M I ØN I Prov I B I I I ødd I ød2 I ødd I 01 I 1 2 I 13 I 14 I 15 I 16 I / I U I														W												
32 6 18 35 70 76 70 35 102 M16 6 8 38 8 60 45 32 32 70 61 85 9.0 25 2.5 0.03 0 40 7.5 19.5 42.5 8.5 92.5 8.5 42.5 125 M20 6 10 46 8 75 55 40 40 87.6 ⁴¹ 105. ⁴¹ 102 8.6, 30 3.5 2.5 0.03 0 50 8 20 60 100 102 M2.5 M2.5 M2.5 6 10 46 8 75 55 40 40 87.6 ⁴¹ 105. ⁴¹ 102 8.6, 30 3.5 3.5 3.5 3.5 40 87.6 ⁴¹ 105. ⁴¹ 102 8.6, 30 3.5 3.5 3.5 40 40 87.6 ⁴¹ 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 4	16	2	12,5	23	46	48	46	23	65	M8	4	4	20	6	32	25	16	16	43 ^{+0,1}	56 ^{+0,1}	54	42,5	20	2	2	0,03	0,05
40 7.5 19.5 42.5 85 92.5 85 42.5 125 M20 6 10 46 8 75 55 40 40 87 tot 105 tot 105 tot 84.5 30 33 30.6 0 50 8 20 50 100 108 100 50 140 M20 8 10 46 8 90 68 50 100 tot 112 tot 84.5 30 33 4.0 0.05 0 63 125 24.5 62.5 137.5 126 62.5 180 M20 8 12 66 8 120 90 63 63 130 tot 150 tot 140 40 40 100 tot 120 tot 117 97.5 35 3 4 0.05 0 63 125 24.5 125 137.5 126 62.5 120 68 120 90 63 63 130 tot 150 tot 127 40 4 4 0.05 0 <	25	4	13	29	58	62	58	29	85	M12	6	6	30	8	45	34	25	25	58 ^{+0,1}	72 ^{+0,1}	70	57	30	2,5	2,5	0,03	0,05
50 8 20 50 100 108 100 50 140 M20 8 10 46 8 90 68 50 100 117 97.5 35 33 4 0,05 0 63 125 24.5 62.5 125 137.5 125 62.5 180 M20 8 12 66 8 120 90 63 63 130.6 ¹¹ 150 127 40 4 4 0.05 0	32	6	18	35	70	76	70	35	102	M16	6	8	38	8	60	45	32	32	70 ^{+0,1}	85 ^{+0,1}	83	68,5	30	2,5	2,5	0,03	0,1
63 125 245 625 125 137,5 125 625 180 M30 8 12 66 8 120 90 63 63 130 ^{+0.1} 155 ^{+0.1} 150 127 40 4 4 0,05 0	40	7,5	19.5	42.5	85	92.5	85	42,5	125	M20	6	10	46	8	75	55	40	40	87 ^{+0,1}	105 ^{+0,1}	102	84,5	30	3	3	0,05	0,1
	50	8	20	50	100	108	100	50	140	M20	8	10	46	8	90	68	50	50	100 0 +0,1	122 ^{+0,1}	117	97,5	35	3	4	0,05	0,1
80 20 - 20	63	12.5	24.5	62.5	125	137,5	125	62.5	180	M30	8	12	66	8	120	90	63	63	130 ₀ ^{+0,1}	155 ₀ ^{+0,1}	150	127	40	4	4	0,05	0,2
	80	-	-	-	-	-	Ø200	-	Ø250	M24	10	16	54	10	145	110	80	80	175 ₀ ^{+0,2}	205 +0,2	200	170,5	40	5	5	0,05	0,2

15 MODEL CODES OF POWER SUPPLY AND COMMUNICATION CONNECTORS (to be ordered separately)

VALVE VERSION	-AERS	, -TERS	-AERS/Z -TERS/Z	-Serial (-PS) or CANopen (-BC)	PROFIBUS DP (-BP)	Pressure transducer only for -AERS							
CONNECTOR CODE	ZH-7P	ZM-7P	ZH-12P	ZH-5P	ZH-5P/BP	ZH-4P-M8/5 (1)							
PROTECTION DEGREE	IP67	IP67	IP65	IP67	IP67	IP67							
DATA SHEET		G205, K500											

(1) M8 connector ZH-4P-M8/5 moulded on cable 5 mt lenght for pressure transducer