

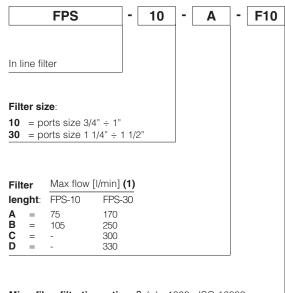
In line filters type FPS

Threaded ports - max flow 330 l/min, max pressure 320 bar

Phase-out components not recommended for new application - see table LF032 for new series

FPS in line filters are designed to protect the whole hydraulic circuit or a single valve from contamination present in the working fluid. They are particularly recommended for systems with proportional valves.

FPS filters are available with following features:


- two head sizes with BSPP or SAE threaded ports, from 3/4" to 1 1/2"
- max working pressure:

320 bar for FPS-10 all ports sizes and FPS-30 with ports size 1 1/4"

280 bar for FPS-30 with ports size 1 1/2"

- four filter lengths with max flow 330 I/min
- without or with by-pass valve with cracking pressure 6 bar
- microfibre filter element with filtration rating 4,5 - 7 - 12 μm(c) (βx (c) >1000, ISO 16889).
 Collapse pressure 21 bar for filters equipped with by-pass valve or 210 bar for filters without by-pass
- without or with differential clogging indicator (electrical or visual)

1 MODEL CODE OF COMPLETE FILTERS

Microfibre filtration rating, $\beta x(c) > 1000 - ISO 16889$:

F03 = 4,5 μ m (c) **F06** = 7 μ m (c)

 $F10 = 12 \mu m (c)$

O1 - R - W * / Seals material:

Series - NBR
PE = FKM (4)

Differential clogging indicator see sect. 9:

W = without, indicator port unplugged

W = without, indicator port unplugged
 P = without, indicator port with steel plug
 L = electrical indicator with LED (3)

M = electrical indicator without LED (3)

V = visual indicator (3)

-pass:

R = by-pass valve with cracking pressure 6 bar

(filter element PSH-*-R with collapse pressure 21 bar)

N = without by-pass

(filter element PSH-*-N with collapse pressure 210 bar)

Ports size:

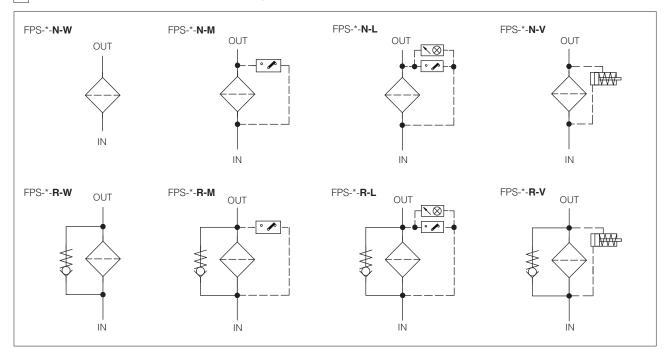
BSPP threaded:

FPS-10 FPS-30 **01** = G 3/4" **03** = G 1 1/4" **02** = G 1" **04** = G 1 1/2"

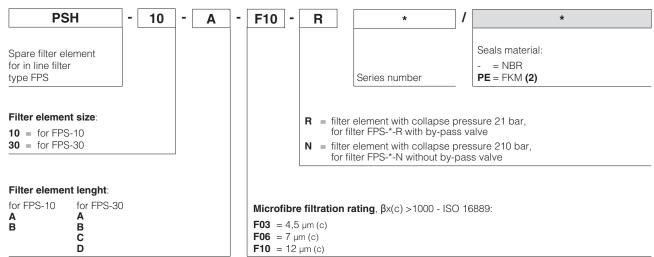
SAE J1926-1 threaded (2):

FPS-10 FPS-30

42 = SAE-16 (1") **44** = SAE-24 (1 1/2")

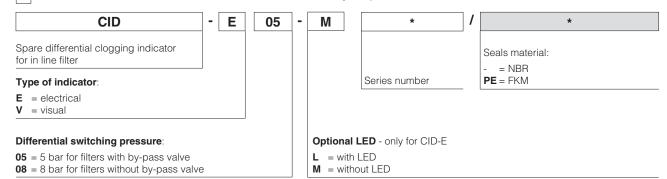

Note: filters for use in potentially explosive atmosphere are available on request, contact Atos Technical Office

- (1) Max flow rates are performed in following conditions:
 - clean filter element
 - filtration rating F10 (12 μ m (c))
 - largest port size
 - option /R, filter element with collapse pressure 21 bar
 - $-\Delta p = 1 \text{ bar}$
 - mineral oil with viscosity 32 mm²/s


In case of different conditions the max flow rates have to be recalculated - see section 10

- (2) Filters with SAE threaded ports are available on request
- (3) The clogging indicator is supplied disassembled from the filter. The indicator port on filter head is plugged with plastic plug
- (4) Filters with FKM seals are available on request

2 HYDRAULIC SYMBOLS (representation according to ISO 1219-1)



3 MODEL CODE OF FILTER ELEMENTS - only for spare (1)

- (1) Select the filter element according to the model code reported on the filter nameplate, see section 14.1
- (2) Filters element with FKM seals are available on request

4 MODEL CODE OF DIFFERENTIAL CLOGGING INDICATORS - only for spare

5 GENERAL CHARACTERISTICS

Assembly position / location Vertical position with the bowl downward							
Ambient temperature range		Standard = -20° C ÷ $+70^{\circ}$ C /PE option = -20° C ÷ $+70^{\circ}$ C					
Storage temperature range		Standard = -20° C ÷ $+80^{\circ}$ C /PE option = -20° C ÷ $+80^{\circ}$ C					
Materials	Filter head	Cast iron					
_	Filter bowl	Steel					
Surface protection		Phosphatized					
Fatigue strength		min. 1 x 10 ⁶ cycles at 320 bar, for FPS-10 and FPS-30 with ports size 1 1/4" min. 1 x 10 ⁶ cycles at 280 bar, only for FPS-30 with ports size 1 1/2"					

6 HYDRAULICS CHARACTERISTICS

Filter size			10		30				
Port size code		01	02	42	03	04	44		
BSPP threaded		G3/4"	G1"		G1 1/4"	G1 1/2"			
Port dimension	SAE J1926-1 threaded			SAE-16			SAE-24		
Max operating pressure (bar)			3:	20		28	30		
Max flow (1)	R = filter with by-pass	60 ÷ 80	75 ÷ 105	60 ÷ 80	165 ÷ 305	170 ÷ 330	170 ÷ 330		
(I/min)	N = filter without by-pass	55 ÷ 75	65 ÷ 90	55 ÷ 75	145 ÷ 245	150 ÷ 260	150 ÷ 260		
Direction of filtr	ration	See the arrow on the filter head							

(1) Max flow rates are performed in following conditions:

- clean filter element
- min ÷ max filter lenght
- filtration rating F10 (12 μm (c))
- mineral oil with viscosity 32 mm²/s

- ∆p 1 bar

In case of different conditions the max flow rates have to be recalculated - see section 10

7 FILTER ELEMENTS

Material		Inorganic microfibre					
File-alian making an an	F03	β4,5μm (c) ≥1000					
Filtation rating as per ISO16889	F06	β _{7,5μm (c)} ≥1000					
por 100 10000	F10	β _{12μm (c)} ≥1000					
Filter element	R = for filter with by-pass valve	21 bar					
collapse pressure	N = for filter without by-pass valve	210 bar					

8 SEALS AND HYDRAULIC FLUIDS - for other fluids not included in below table, consult our technical office

Seals, recommended fluid temperature	NBR seals (standard) = -25° C \div +100°C, with HFC hydraulic fluids = +10°C \div +50°C FKM seals (/PE option) = -25° C \div +100°C								
Recommended viscosity	15 ÷ 100 mm²/s - max allowed ra	nge 2.8 ÷ 500 mm²/s							
Hydraulic fluid	Suitable seals type	Classification	Ref. Standard						
Mineral oils	NBR, FKM	HL, HLP, HLPD, HVLP, HVLPD	DIN 51524						
Flame resistant without water	FKM	HFDU, HFDR	ISO 12922						
Flame resistant with water	NBR HFC								

9 DIFFERENTIAL CLOGGING INDICATORS

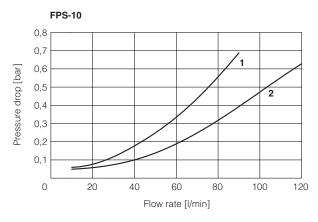
Model code		CID-E* EL	CID-V* VISUAL	
Differential switching	CID-E05, CID-V05	5 bar	5 bar ± 15%	
pressure	CID-E08, CID-V08	8 bar	8 bar ± 10%	
Max pressure		450	420 bar	
Max differential pressu	ure		200 bar	
Ambient temperature		-25°C ÷	+100°C	-25°C ÷ +80°C
Hydraulic connection			M20x1,5	
Duty factor	.		100%	
Mechanical life	·			
Mass (Kg)		0,	0,11	
Electric connection		Electric plug connection as per DI	-	
Davier averalis	CID-E05-L, CID-E08-L	24 Vpc	-	
Power supply	CID-E05-M, CID-E08-M	14 Vpc ÷ 30 Vpc	125 Vac ÷ 250 Vac	-
Max current - resistive	(inductive)	5 A (4 A) ÷ 4 A (3 A)	5 A (3 A) ÷ 3 A (2 A)	-
Protection degree to DI	N EN 60529	IP65 with mat	-	
Electric scheme		CID-*-L4 (-)	CID-*-M	
shown with switch position in case of clean filter element		1 (+) 2 NC 3 NO	1 C 2 NC 3 NO	

10 FILTERS SIZING

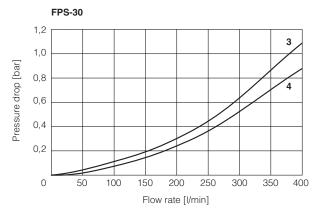
For the filter sizing it is necessary to consider the Total Δp at the maximum flow at which the filter must work.

The Total Δp is given by the sum of filter head Δp plus the filter element Δp :

Total Δp = filter head Δp + filter element Δp


In the best conditions the total Δp should not exceed 1,0 bar

See below sections to calculate the Δp of filter head and Δp of the filter element


10.1 Q/∆p DIAGRAMS OF FILTER HEAD

The pressure drop of filter head mainly depends on the ports size and fluid density

In the following diagrams are reported the Δp characteristics of filter head based on mineral oil with density 0,86 kg/dm³ and viscosity 30 mm²/s

1 = FPS-10*** 01 (G 3/4") **2** = FPS-10*** 02 (G 1") FPS-10*** 42 (SAE-16)

3 = FPS-30*** 03 (G 1¹/₄") **4** = FPS-30*** 04 (G 1¹/₂") FPS-30*** 44 (SAE-24)

10.2 FILTER ELEMENT Δp

The pressure drop through the filter depends to:

- size of filter element
- filtration rating
- fluid viscosity

The Δp of filter element is given by the formula:

$$\Delta p$$
 of filter element = Q $\times \frac{Gc}{1000} \times \frac{Viscosity}{30}$

Q = working flow (I/min)

 $\mathbf{Gc} = \mathbf{Gradient}$ coefficient (mbar/(I/min)). The Gc values are reported in the following table

Viscosity = effective fluid viscosity in the working conditions (mm²/s)

Gradient coefficent Gc of PSH filter elements

Filter eler	1	0	30					
Filter elem	ent lenght	Α	В	Α	В	С	D	
Filter element type	Filtration rating	Gc Gradient coefficient						
R	F03	27.75	15.25	14	7.13	4.7	3.62	
for filter with	F06	15.12	7.58	8.03	3.37	2.2	1.89	
bypass valve	F10	9.37	4.91	4.43	2.33	1.5	1.12	
N	F03	32.2	17.32	16.48	8.13	5.5	4.71	
for filter without bypass valve	F06	22.38	9.41	11.88	4.18	3.28	2.91	
	F10	11.2	6.27	5.27	3.45	2.36	2.15	

Example

Calculation of Total Δp for filter type FPS-10-B-F10-02-R at Q = 80 l/min and viscosity 46 mm²/s (filter element PSH-10-B-F10-R)

 $\Delta \mathbf{p}$ of filter head + filter bowl = 0,31 bar

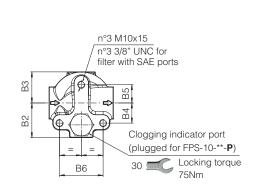
Gc = 4,91 mbar/(I/min)

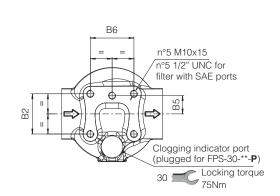
Filter element
$$\Delta \mathbf{p} = 80 \text{ X } \frac{4,91}{1000} \text{ X } \frac{46}{30} = 0,60 \text{ bar}$$

Total $\Delta p = 0.31 + 0.60 =$ **0.91** bar

FPS -10

FPS -30

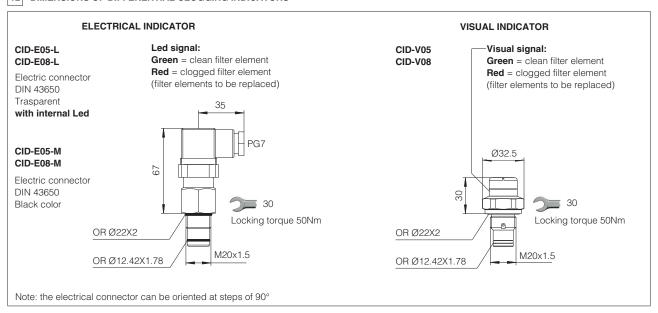



L1 for FPS-30-D only <u>D1</u>

120

D1

FPS -10



FPS -30

1 Optional differential clogging indicator. The drawing shows the electrical indicator type CIA-E*

Code	A	В1	B2	В3	В4	B5	В6	D1	F	H1	H2	L1	R (element removal)	Mass (Kg)					
FPS-10-A	3/4" BSPP 1" BSPP 22,5 SAE-16				22.5	47,5	43,5	27,5			70	70	200	92	90	110	3,5		
FPS-10-B		22,0	47,5	7,5 43,5	27,5			70	70	293	32	30	110	4,5					
FPS-30-A											25	60,6			248	8			9,0
FPS-30-B	1 1/4" BSPP 1 1/2 BSPP	PP 40	55	-	-	25	00,0	107	07 50	341	129 140	140	130	9,5					
FPS-30-C	SAE-24									461		140		14,4					
FPS-30-D										554				18,8					

12 DIMENSIONS OF DIFFERENTIAL CLOGGING INDICATORS

13 INSTALLATION AND COMMISSIONING

The max operating pressure of the system must not exceed the max working pressure of the filter. During the filter installation, pay attention to respect the flow direction, shown by the arrow on the filter head. The filter should be preferably mounted with the bowl downward.

The filter head should be properly secured using the threaded fixing holes on the filter head.

Make sure that there is enough space for the replacement of the filter element.

Never run the system without the filter element.

For filters ordered with clogging indicator:

- remove the plastic plug from the indicator port on the filter head
- install the clogging indicator and lock it at the specified torque

During the cold start up (fluid temperature lower than 30°C), a false clogging indicator signal can be given due to the high fluid viscosity.

14 MAINTENANCE

The filter element must be replaced as soon as the clogging indicator switches to highlight the filter clogged condition

For filters without clogging indicator, the filter element must be replaced according to the system manufacturer's recommendations.


Select the new filter element according to the model code reported on the filter nameplate, see section 14.1

For the replacement of the filter element, proceed as follow:

- \bullet releases the system pressure; the filter has no pressure bleeding device
- pay attention to the fluid and filter surface temperature. Always use suitable gloves and protection glasses
- unscrew the bowl ② from the filter head ① by turning counterclockwise (view from bottom side)
- remove the dirty filter element ③ pulling it carefully
- lubricate the seal of new filter element and insert it over the spigot in the filter head
- clean the bowl internally, lubricate the threads and screw by hand the bowl to the filter head by turning clockwise (view from bottom side). Tighten at the recommended torque.

WARNING: The dirty filter elements cannot be cleaned and re-used. They are classified as "dangerous waste material", then they must be disposed of by authorized Companies, according to the local laws.

14.1 FILTER IDENTIFICATION NAMEPLATE

- 1 Model code of complete filter
- 2 Model code of filter element
- 3 Max working pressure
- 4 Filter matrix code